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I. INTRODUCTION

In the last two decades data compression by means of
Vector Quantization (VQ) has received enormous
attention, motivated by the expansion of
telecommunication technologies and services [1]. The
design for VQ codebooks that are efficient for data
compression and robust against channel errors has
become fundamental [2]. To face this dual problem
(codebook design + index assignment) some methods
deal with either constituent separately [3], [4], [5].
Others use integrated approaches in which the codebook
search conveys the index assignment only in an implicit
manner [6]. When index assignment optimisation is
addressed, a multiplicity of solutions appear. In some
techniques this multiplicity means a considerable
drawback. This is particularly the case with Genetic
Algorithms (GA) [7]. In this paper this multiple
representation problem is explained and simple solutions
provided. In [8], a GA for VQ design was presented. We
have modified that algorithm to include the mentioned
solutions for the multiple representation problem. This
new approach is explained in this paper, and a simulation
study in which three grey images are vector quantized is

reported. The results of the study are commented and
finally some conclusions extracted.

II. FUNDAMENTALS

$��9HFWRU�4XDQWL]DWLRQ

In VQ (Figure 1) a source vector [  of dimension N is
coded into index L, meaning that vector �F  has been

selected as the best representative of vector [  within the
/-sized codebook { }� = { }120 , .. ,, −

�FFF . This selection is

usually called coding rule. The binary representation of

index�L�is ( )�

Eπ  obtained as the output of the index

Figure 1. VQ-based system

assignment function (i.a.f.) π  to input L. Then ( )�

Eπ

traverses a noisy channel at the end of which, ( )�

Eπ  is

received. This binary ( )�

Eπ  is decoded into index M, which

in turn, points to vector �F  as its final output. The

problem of VQ design is that of finding the best
codebook, coding rule and assignment function, so that

�F  is statistically as close to [  as possible, i.e., the

system distortion is minimised. If the training vector set
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9={ }110    ,, −
����  embodies the statistical distribution of [ ,

this distortion may be approximated by [6].
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where { }6 ={ }121 , .. ,, −
�666  is the partition of 9 formed

by the regions { }1 1 0  ,  , , −= 	
���� YYY6  (subsets of 9

comprised by the training vectors that are coded into

index�L), Ni is the cardinal of 6 � , and ( ) ( )( )
EE ππ /Pr , the

probability of receiving ( )�
Eπ  when ( )�

Eπ  was actually

transmitted ( 2

2
ED − calls for the square Euclidean

distance between any two vectors D  and E ).
The channel is considered to be additive, memoryless
and binary symmetric with a bit error rate (BER) of value
ε. Index transition probabilities are given by [4]:

( ) ( )( ) ���� � �
EE

−−= ψ
ππ εε )1(/Pr (2.1)

( ) ( )( )��
� � EEKDP ππψ ,= (2.2)

where m is the number of bits to code� L� and M,

( )(log2 /P = ) and ),( 21 EEKDP , the Hamming

distance (number of distinct bits) between any two
binaries�E � �and E � .

Given a codebook, an assignment function and a
probabilities scheme, the best coding strategy is given by
the Generalised Nearest Neighbour Rule (GNN) [6].
Besides provided an assignment function, a probabilities
scheme, and a coding strategy given by a certain
partition, the best codebook is stated by the Generalised
Centroid Rule (GC) [6]. The alternate and iterative
application of the GNN and the GC rules comprises the
GLA algorithm [4], which produces a monotonic
decrease of distortion usually converging to a local
minimum system distortion point in the codebook space.
There is not a known third rule to optimise the index
assignment function (i.a.f.) Π explicitly; here a GA will
be used for this task.

%��*HQHWLF�$OJRULWKPV

GA are global optimisation procedures inspired in Nature
that keep a population of tentative solutions (called
individuals or chromosomes) to a given problem. These
individuals evolve in such a way that better solutions are
achieved as the algorithm progresses (see Figure. 2). This
evolution is based on selection of the fittest individuals in
the population, together with several random procedures
such as crossover (offspring generation from two
selected individuals) and mutation (random change in
one individual) [9].

Figure 2. Genetic Algorithm

III. INDEX ASSIGNMENT AND THE MULTIPLE
REPRESENTATION PROBLEM
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The i.a.f. π  can be expressed by means of the matrix
Mπ:
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The i-th row of this matrix, namely ( )Eπ , contains a string

with the m bits with which codevector �F  is coded. If

{ }&  and { }6  are given, the distortion in (1) is only

dependent on π , which only affects the term

( )��
EE ππ /Pr . Moreover, as it can be inferred from (2),

π  only affects this probability of error by way of

( )��
EEKDP ππ , . From this comes that if two different i.a.f.

(π1 and π2) are such that

( ) ( )� � 
EEKDPEEKDP

2211
,, ππππ =  

.1 ..,  ,1 ,0, −=∀ /ML (4)

they will render identical mean distortion. Therefore they
can be considered as “equivalent” (i.e., belonging to the
same class of i.a.f.). The following two factors are the
cause of the multiplicity in the i.a.f. space [7]:

Step 1. Initialization.

Step 2. Cost function evaluation.

Step 3. IF convergence has been reached or a given

number of generations have taken place,,

HALT.

Step 4. Selection of the fittest individuals.

Step 5. Procreation of new individuals from the

selected ones.

Step 6. GO TO Step 2



f1- If 
1π0 is equal to 

2π0  with the sole difference of

one or several columns in which the zeros in 
1π0

are ones in 
2π0  and vice-versa, then these two

matrixes will hold condition (4) and, π1 and π2 will be
equivalent i.a.f. This stems from the symmetry of the
channel BER with respect to zeros and ones. As every
column can be taken in two different ways there exist

/
�

=2  different and equivalent i.a.f. for a given
π .

f2- If
2π0 is obtained from matrix

1π0 permuting two or

more of its columns, it results that 
1π0  and 

2π0

will attend condition (4). Again π1 and π2 will be
equivalent i.a.f. The demonstration of this property
comes from the equal probability of error in the m
different bits composing the bit string of a
codevector. A total of m! different equivalent i.a.f.
can be found in such a way.

As the two previous transformations do not interfere (if

from matrix 
1π% , the new matrix 

2π% can be reached by

means of f1, it cannot be reached by means of f2 and vice-
versa), it results that any i.a.f. class contains at least

!2 P
�

 members [7]. For many optimisation methods this
multiplicity of solutions represents an important
inconvenience. This is particularly true with GA, as
different individuals will move towards different minima,
and the population will not co-operate as a whole in the
direction of only one minimum point. It would thus be
desirable that each class could have a representative
member.

%��7KH�VROXWLRQV

s1- The first multiplicity factor (f1) can be dealt with by

imposing that the last row in every matrix π0  be

formed only by ones:
( ) { }1 ., . ,1 ,11 =−

�

Eπ (5)

This way, no one-to-zero or zero-to-one column
interchange is permitted. This is something already
considered in [7].

s2- The second multiplicity factor (f2) can be deterred in

the following way. Let establish a measure ( )V4π

for the column V of matrix π0 , for example,

transforming this binary column vector into an
integer representation given by:

( ) ( ) �

�

�

VW%V4 2 ,
1

0
∑

−

=
= ππ  (6)

where ( )VW% ,π  is the s-th entry to binary vector
( )�

Eπ . Let then proceed to permute all the columns of

π0 , reordering them according to their ( )V4π

measurement. Call this new matrix π0̂ . Any matrix

belonging to the same class as π0  and suffering

these operations will turn into the same matrix π0̂ .

Therefore π0̂  can be considered as the

representative matrix of this class.

In [7] solution s1 was suggested to deal with factor f1, but
f2 was left unattended. Applying s1 and s2, the
multiplicity representation will collapse and the search

space will be reduced in a factor of !2 P .

IV. THE HYBRID GENETIC ALGORITHM

Based in a previous work [8] a new VQ design method is
proposed in which GLA is used to find good codebooks
and a specially designed GA (which we call GAIA) tries
to obtain good index assignments for these codebooks.
The new Hybrid Genetic Algorithm (HGA) maintains a
collection of individuals, each one consisting of:
-a tentative codebook,
-a tentative index assignment for this codebook.
The overall HGA consists on the alternate and iterative
application of GLA and GAIA, as expressed in Figure 3.
The GLA operates only on the codevectors, leaving the
index assignments unaffected. First a number (T) of
iterations are executed to each individual, and their
codebooks changed accordingly. Then S iterations of
GAIA are run and the individuals’ index assignments
evolve, without altering the previously formed
codebooks. This process is repeated as far as the system
distortion keeps reducing.

Figure.3. Hybrid Genetic Algorithm

$��*HQHWLF�$OJRULWKP�IRU�,QGH[�$VVLJQPHQW

In [8] a GA was used to find index assignments in a VQ
optimisation process. Here we have modified that

Step 1. Codebook initialisation.

Step 2 T iterations of GLA.

Step 3. S iterations of GAIA.

Step 4. IF mean distortion is reduced, GO TO Step 2.

Step 5. OTHERWISE,

HALT.



algorithm and include the two solutions for the multiple
representation problem explained in Section 3. Our
GAIA is a GA, in which individuals are tentative i.a.f.

( �π  , j=1,2,  ,M). Let )( �
�Hπ  be the integer representation

of ( )�
�Eπ . This way �π  is represented by the list

{ })1()1()0(  , . . ,, −=
�

���� HHH% ππππ , which will be one of the

!/ � possible permutations of the list { }1- ..  0,1, / . In

GAIA, the following genetic operators are used:

-    Evaluation: each individual is evaluated and its
fitness obtained from the distortion function in
(1) as:

{
{ } { }{ }),,(

,..,1
)( �� 6&'

0N

PD[ILWQHVV ππ
=

= -

{ } { } ),,( �6&' π . (7)

- Random selection proportional to individual’s
fitness [9];

- Cycle crossover: as described in [10];
- Mutation: with a certain probability, for every

individual vector, two randomly selected entries
are interchanged.

- Reordering 1: s1 is included (i.e., throughout all

the space of solutions, 1)1( −=− /H
�

	π ).

- Reordering 2: application of solution s2 after
every crossover and mutation operation.

- Repetition removal: whenever two individuals of
the population are identical, one of them is
mutated.

- Elitism: the best solution in one generation is
preserved for the next generation without being
crossed or mutated [9].

V. SIMULATION TESTS AND RESULTS

$�� 6LPXODWLRQ�WHVWV

We used for our tests Lena, Baboon and Pepper images
(256x256 pixels large, initially quantized at 8 bits/pixel).
4096 non-overlapping 16-dimensional vectors,
corresponding to 4x4 pixel blocks, were taken as the
training sets for each image. Finally, we used codebooks
of sizes 64 and 128, and BERs of 1.0E-4, 1.0E-3 and
1.0E-2.

The following algorithms were tested for
comparison:

a- HGA I: Our HGA as explained before.
b- HGA II: HGA in which the crossover operator

was removed
c- HGA III: HGA in which the mutation operator

was removed
d- HGA IV: HGA in which the reordering 2 operator

(s2) was removed.
e- GLA: as described in [4] and outlined in Section

II.A.

As merit figure we used the widespread Peak Signal
to Noise Ratio, defined as [3]:

3615=10 log10(2552 N/') (8)

being ' the distortion in (1) and N, the vector dimension.
For each one of these test cases several independent runs
were carried out until a total amount of 20.000 GLA
simple iterations (GNN + GC rules) were processed. The
minimum distortion throughout all these runs was taken
as the term D in (8). This way the different algorithms
were tested in a computationally fair basis.

%��5HVXOWV

In Table 1 and 2 results of these tests are reported�

/HQD %DERRQ 3HSSHU

%(5 ���(�� ���(�� ���(�� ���(�� ���(�� ���(�� ���(�� ���(�� ���(��

+*$�, 26.65 26.58 25.17 23.67 23.57 22.98 27.42 27.01 25.41
+*$�,, 26.65 26.56 25.10 23.44 23.51 22.96 27.35 27.05 25.44
+*$�,,, 26.63 26.47 25.08 23.47 23.49 22.96 27.38 27.05 25.44
+*$�9, 26.60 26.53 25.16 23.47 23.50 22.96 27.33 27.02 25.39
*/$ 26.95 26.30 24.89 23.66 23.49 22.84 27.42 26.81 25.17

Table 1. 3615 of the VQ of Lena, Baboon and Pepper images with codebooks of size /=64.

/HQD %DERRQ 3HSSHU

%(5 ���(�� ���(�� ���(�� ���(�� ���(�� ���(�� ���(�� ���(�� ���(��

+*$�, 27.57 27.56 25.99 24.3 24.20 23.51 28.71 28.21 26.42
+*$�,, 27.52 27.51 25.94 23.82 24.05 23.42 28.35 28.11 26.38
+*$�,,, 27.54 27.45 25.94 23.83 24.00 23.42 28.29 28.07 26.23
+*$�9, 27.53 27.49 25.99 23.89 24.05 23.43 28.31 28.13 26.30
*/$ 27.95 27.17 25.60 24.31 24.09 23.27 28.61 27.76 25.98

Table 2. 3615 of the VQ of Lena, Baboon and Pepper images with codebooks of size /=128.



They show a general superiority of our HGA over GLA,
(only for Lena image and a BER of 1.0E-4 this does not
hold). It is also important to point out the clear tendency
of the Hybrid approach to improve performance as the
BER grows and also as the codebook size increases, as
compared to GLA. Finally the slight but consistent decay
in system performance when crossover, mutation or the
reordering operator are removed proves the convenience
of the three of them. Particularly the benefit in the use of
the reordering operators calls for the attention that the
multiple representation problem should be given and
serves to indicate the successful use of mechanisms s1

and s2 to deal with it.

V. CONCLUSIONS

The multiple representation problem, which appears in
index assignment optimisation in the context of noisy
channel VQ design has been explored. Simple solutions
have been provided. These solutions have been included
in the genetic part of a hybrid (Genetic + GLA) VQ
design method. Several tests in the VQ of grey images
confirm the convenience of separated and alternated
strategies for the codebook + index assignment search,
and also reinforce the confidence in approaches that deal
with the multiple representation problem as the ones
suggested here, particularly for the VQ design for highly
noisy channels.
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